Identification and characterization of a novel gene, hos3+, the function of which is necessary for growth under high osmotic stress in fission yeast.

نویسندگان

  • K Aoyama
  • R Kawaura
  • H Yamada
  • H Aiba
  • T Mizuno
چکیده

hos3 mutants of the fission yeast Schizosaccharomyces pombe showed the phenotype of high osmolarity sensitivity for growth. An S. pombe strain carrying the hos3-M26 allele cannot form colonies on agar plates containing 2 M glucose, but the parental strain can do so very well, as demonstrated previously. The hos3+ gene was cloned and identified as one that encodes a small protein of 94 amino acids, which shows no sequence similarity to any other proteins in the current databases. A hos3delta strain, which we then constructed, had the phenotype of high osmolarity sensitivity, as in the case of the original hos3-M26 mutant. More interestingly, when these hos- cells were grown in the non-permissive growth condition in the presence of 2 M glucose, we found that unusually many septated cells were accumulated after a prolonged incubation. A multicopy suppressor gene for hos- mutations was also isolated and identified as the dsk1+ gene encoding a protein kinase, which was previously suggested to be implicated in a process of the mitotic regulation of S. pombe. The function of the hos3+ gene is discussed from these results.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Identification of Genes and Molecular Markers Associated with Germination Components in F9 Lines of Rice under Osmotic Stress

water stress and, in this regard, it is necessary to improve rice cultivars to tolerance to environmental stresses. In this research 154 recombinant inbred lines (F9) derived from a cross between Shah-Pasand and IR28 in three conditions (non-stress, osmotic stress -0.3 and -0.6 Mpa induced through polyethylene glycol-6000) were evaluated as a factorial experiment in randomized complete block de...

متن کامل

Characterization of an Interesting Novel Mutant Strain of Commercial Saccharomyces cerevisiae

The yeast strains that are resistant to high concentration of ethanol have biotechnological benefits and aresuitable models for physiology and molecular genetics research fields. A novel ethanol-tolerant mutant strain,mut1, derived from the commercial Saccharomyces cerevisiae showed higher ethanol production, and alsodemonstrated resistance to ethanol but not to other alcohols...

متن کامل

Isolation and characterization of high-osmolarity-sensitive mutants of fission yeast.

For the fission yeast Schizosaccharomyces pombe, adaptation to high-osmolarity medium is mediated by a mitogen-activated protein (MAP) kinase cascade, involving the Wis1 MAP kinase kinase and the Sty1 MAP kinase. The MAP kinase pathway transduces an osmotic signal and accordingly regulates the expression of the downstream target gene (gpd1(+)) that encodes NADH-dependent glycerol-3-phosphate de...

متن کامل

Effect of drought stress on MYB gene expression and osmotic regulator levels of five durum wheat genotypes (Triticum turgidum L.)

Plant growth is greatly influenced by environmental stresses including water deficit, salinity and extreme temperatures. Therefore, the identification of genes, especially regulatory ones whose expression enables plants to adapt to or to tolerate these abiotic stresses, is very essential. MYB proteins, a superfamily of transcription factors, play regulatory roles in developmental processes and ...

متن کامل

Evidence for a novel MAPKKK-independent pathway controlling the stress activated Sty1/Spc1 MAP kinase in fission yeast.

The fission yeast Sty1/Spc1 MAP kinase, like the mammalian JNK/SAPK and p38/CSBP1 kinases, is activated by a range of environmental insults including osmotic stress, hydrogen peroxide, heat shock, UV light and the protein synthesis inhibitor anisomycin. Sty1 is activated by a single MAPKK, Wis1. We demonstrate that the conserved MAPKKK phosphorylation sites Ser 469 and Thr 473 in the catalytic ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Bioscience, biotechnology, and biochemistry

دوره 64 5  شماره 

صفحات  -

تاریخ انتشار 2000